Adaptive optics scanning laser ophthalmoscopy images in a family with the mitochondrial DNA T8993C mutation.

نویسندگان

  • Michael K Yoon
  • Austin Roorda
  • Yuhua Zhang
  • Chiaki Nakanishi
  • Lee-Jun C Wong
  • Qing Zhang
  • Leslie Gillum
  • Ari Green
  • Jacque L Duncan
چکیده

PURPOSE This study was designed to assess the effect of mitochondrial DNA (mtDNA) mutation T8993C on cone structure in a family expressing neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP) syndrome. METHODS Five family members were studied, using clinical examination, nerve conduction studies, perimetry, optical coherence tomography (OCT) measures of central retinal thickness, and electroretinography. High-resolution images of cone structure using adaptive optics scanning laser ophthalmoscopy (AOSLO) were obtained in four subjects with stable fixation. Cone spacing was compared to 18 age-similar normal subjects and converted to z-scores at each location where unambiguous cones were identified. Tissue levels of T8993C mutant heteroplasmy in blood and hair follicles were quantified using real-time allele-refractory mutations system (ARMS) quantitative polymerase chain reaction (qPCR). RESULTS Subjects expressing the T8993C mutation showed varying levels of disease severity. The subject with the lowest mutant load (42%-54%) showed no neurologic or retinal abnormalities. The remaining four subjects with over 77% mutant load all expressed severe neurologic and/or retinal abnormalities. AOSLO images revealed three patterns of cone spacing: pattern 1, normal; pattern 2, increased cone spacing within a contiguous cone mosaic; and pattern 3, patchy cone loss with increased cone spacing. Visual function was most severely affected in pattern 3. CONCLUSIONS High levels of T8993C mutant load were associated with severe neurologic or visual dysfunction, while lower levels caused no detectable abnormalities. Visual function was better in patients with a contiguous and regular cone mosaic. Patients expressing high levels of the mtDNA T8993C mutation show abnormal cone structure, suggesting normal mitochondrial DNA is necessary for normal waveguiding by cones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration.

PURPOSE To evaluate cone spacing using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with nonneovascular AMD, and to correlate progression of AOSLO-derived cone measures with standard measures of macular structure. METHODS Adaptive optics scanning laser ophthalmoscopy images were obtained over 12 to 21 months from seven patients with AMD including four eyes with geographic atr...

متن کامل

MEMS-based adaptive optics scanning laser ophthalmoscopy.

We have developed a compact, robust adaptive optics (AO) scanning laser ophthalmoscope using a microelectromechanical (MEMS) deformable mirror (DM). Facilitated with a Shack-Hartmann wavefront sensor, the MEMS-DM-based AO operates a closed-loop modal wave aberration correction for the human eye and reduces wave aberrations in most eyes to below 0.1 microm rms. Lateral resolution is enhanced, an...

متن کامل

Applications of adaptive optics scanning laser ophthalmoscopy.

Adaptive optics (AO) describes a set of tools to correct or control aberrations in any optical system. In the eye, AO allows for precise control of the ocular aberrations. If used to correct aberrations over a large pupil, for example, cellular level resolution in retinal images can be achieved. AO systems have been demonstrated for advanced ophthalmoscopy as well as for testing and/or improvin...

متن کامل

Cone and rod loss in Stargardt disease revealed by adaptive optics scanning light ophthalmoscopy.

IMPORTANCE Stargardt disease (STGD1) is characterized by macular atrophy and flecks in the retinal pigment epithelium. The causative ABCA4 gene encodes a protein localizing to photoreceptor outer segments. The pathologic steps by which ABCA4 mutations lead to clinically detectable retinal pigment epithelium changes remain unclear. We investigated early STGD1 using adaptive optics scanning light...

متن کامل

Adaptive optics scanning laser ophthalmoscopy.

We present the first scanning laser ophthalmoscope that uses adaptive optics to measure and correct the high order aberrations of the human eye. Adaptive optics increases both lateral and axial resolution, permitting axial sectioning of retinal tissue in vivo. The instrument is used to visualize photoreceptors, nerve fibers and flow of white blood cells in retinal capillaries.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 50 4  شماره 

صفحات  -

تاریخ انتشار 2009